
CENG3430 Rapid Prototyping of Digital Systems

Lecture 09:

Rapid Prototyping (III) –

High Level Synthesis

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk


Recall: What we have done in Lab10

// function to be accelerated in HW

template <typename T, int DIM>

void mmult_hw(T a[DIM][DIM], T b[DIM][DIM], T out[DIM][DIM])

{

int const FACTOR = DIM/2;

// matrix multiplication

L1: for(int ia=0; ia<DIM; ++ia)

L2: for(int ib=0; ib<DIM; ++ib)

{

T sum = 0;

L3: for(int id=0; id<DIM; ++id)

sum += a[ia][id]*b[id][ib];

out[ia][ib] = sum;

}

return;

}

CENG3430 Lec09: High Level Synthesis 2



Outline

• What is High Level Synthesis (HLS)?

• Why High Level Synthesis (HLS)?

• Design Metrics in HLS

• High-Level Synthesis Process

– Scheduling

– Binding

• Vivado High Level Synthesis

– Algorithm Synthesis

– Interface Synthesis

– Inputs and Outputs

CENG3430 Lec09: High Level Synthesis 3



High Level

Synthesis

Logic

Synthesis

What is High Level Synthesis (HLS)?

• In FPGA design, “synthesis” 

usually refers to logic 

synthesis.

– The process of analyzing, 

interpreting HDL code, and 

forming the netlist.

• High-level synthesis means 

synthesizing the high-level 

C, C++ or SystemC code 

into an HDL description.

• Note: Both syntheses will be 
applied (one after the other) 
when designing a Vivado HLS.

CENG3430 Lec09: High Level Synthesis 4



Why High Level Synthesis (HLS)?

• With a high-level representation abstracting low-level 

detail, the description of the circuit becomes simpler.

– The result is that designs can be generated much more 

rapidly than using more traditional methods.

• HLS separates the functionality and implementation. 

– The source code does not fix the architecture.

• Variations on the architecture can be created quickly by applying 

appropriate directives to the HLS process, rather than having to 

fundamentally rework the source code.

• HLS is also beneficial in system development and 

software/hardware partitioning.

– There is a common language for targeting both software 

and hardware elements of the system.
CENG3430 Lec09: High Level Synthesis 5



Design Metrics in HLS

• As mentioned, the functional description and the 

implementation are separate in HLS.

– As a result, the designer has the opportunity to evaluate 

possible architectures generated by the HLS process, and 

optimize according to different requirements.

• Hardware design has two fundamental metrics:

1) Area, or Resource Cost — the amount of hardware 

required to realise the desired functionality;

2) Speed, or specifically throughput or latency — the rate 

at which the circuit can process data.

• The designer is always faced with a trade-off 

between resource cost and speed.

– This is the key aspect evaluated and optimized during HLS.

CENG3430 Lec09: High Level Synthesis 6



High-Level Synthesis Process (1/4)

• In general, HLS is comprised of two main processes:

– Scheduling is the translation of the RTL statements 

interpreted from the C code into a set of operations, each 

with an associated duration in terms of clock cycles.

– Binding is the process of associating the scheduled 

operations with the physical resources of the target device.

CENG3430 Lec09: High Level Synthesis 7



High-Level Synthesis Process (2/4)

• That is, the HLS process must decide 

1) How to schedule the operations (how many clock cycles 

to allocate to their completion), and 

2) How to bind the operations (i.e. how to map them to the 

computational resources on the PL).

• The resulting implementation has a set of metrics, 

principally in terms of (i) latency, (ii) throughput, and 

(iii) the amount of resources used.

– For example, consider a C program involves calculating the 

average of an array input, consisting of ten numbers. The 

implied operations are:

• 9 addition to find the total; followed by

• A multiplication by 0.1 to calculate the average.

CENG3430 Lec09: High Level Synthesis 8



High-Level Synthesis Process (3/4)

CENG3430 Lec09: High Level Synthesis 9



High-Level Synthesis Process (4/4)

• By default, the HLS process will optimize area. 

– That is, it will adopt the first strategy, which consumes the 

fewest resources with long latency and low throughput.

• There are two methods available to drive the high-

level synthesis process towards different goals. 

– Constraints — The designer places a limit on some aspect 

of the design.

• For instance, the minimum clock period may be specified.

– Directives — The designer can exert more specific 

influence over the RTL implementation via directives.

• There are various types of directive available which map to certain 

features of the code, enabling the designer to dictate.

• For example, how the HLS engine treats loops or arrays identified in 

the C code, or the latency of particular operations. 

CENG3430 Lec09: High Level Synthesis 10



Vivado High Level Synthesis (1/2)

• Vivado High Level Synthesis

1) First transforms (i.e., high-level synthesis) a C, C++ or 

SystemC design into an RTL implementation

2) Then synthesizes and implements (i.e., logic synthesis) 

the RTL implementation onto the programmable logic of a 

Xilinx FPGA or Zynq device.

• In Vivado HLS design, the two primary aspects of the 

design are analyzed:

– The interface of the design: its top-level connections;

– The functionality of the design: the algorithm(s) that it 

implements. 

CENG3430 Lec09: High Level Synthesis 11



Vivado High Level Synthesis (2/2)

• The functionality is synthesized from the input code 

via the process of Algorithm Synthesis.

• The interface is created either be manually specified, 

or inferred from the code (Interface Synthesis).

CENG3430 Lec09: High Level Synthesis 12



Inputs/Outputs of Vivado HLS (1/3)

• Inputs of Vivado

HLS process:

1) C, C++ or 

SystemC files

• These contain the 

functions to be 

synthesized.

2) C testbench files

• These form the 

basis for verifying 

both the C code 

and the RTL code 

generated by the 

HLS process.

CENG3430 Lec09: High Level Synthesis 13



Inputs/Outputs of Vivado HLS (2/3)

• Inputs of Vivado

HLS process:

3) Constraints* 

• The timing 

constraint (desired 

clock period), along 

with a clock 

uncertainty figure 

and details of the 

target device. 

4) Directives* 

• The style of 

implementation 

generated from the 

high-level.

*: optional
CENG3430 Lec09: High Level Synthesis 14



Inputs/Outputs of Vivado HLS (3/3)

• The outputs

produced are as 

listed below.

1) SystemC model

2) VHDL or Verilog 

files

3) Packaged IP (for 

Vivado, System 

Generator, or XPS)

• The designer is 

able to choose 

based on different 

prototyping styles.

CENG3430 Lec09: High Level Synthesis 15



Summary

• What is High Level Synthesis (HLS)?

• Why High Level Synthesis (HLS)?

• Design Metrics in HLS

• High-Level Synthesis Process

– Scheduling

– Binding

• Vivado High Level Synthesis

– Algorithm Synthesis

– Interface Synthesis

– Inputs and Outputs

CENG3430 Lec09: High Level Synthesis 16


